
A step by step guide to using the NAG Fortran Library
with Microsoft Excel 2003

Michael Croucher, University of Manchester

1. Introduction

Microsoft Excel is a widely available and easy to use spreadsheet package that has

applications in many areas of numerical computing but its support for higher-level

mathematics is somewhat lacking in various areas. The NAG Fortran Library, on the

other hand, is a large set of highly accurate mathematical routines in areas such as the

evaluation of special functions, non-linear optimization, statistics, numerical integration,

curve fitting and linear algebra.

By using a little Visual Basic for Applications (VBA) it is possible to utilize the full

power of the NAG Library from within Excel. This allows investigators to use all of

their Excel Macros and templates alongside a highly respected set of advanced numerical

routines.

This guide describes how to use the NAG Fortran Library in Excel 2003. It is recognised

that some users will want to interface the NAG C Library and Excel. The NAG website

gives C users such help http://www.nag.co.uk/numeric/callingDLLsfromotherlang.asp.

2. Which version of Excel and the NAG Fortran Library do you need?

This document is intended for use with Microsoft Excel 2003.

The NAG Fortran Library is available for a wide range of hardware, compiler and

operating system configurations. All of the examples in this document were prepared and

tested using FLDLL214ML which is a 32 bit Microsoft Windows DLL version of the

libraries compiled using the Intel Visual Fortran compiler.

3. Running the Example Programs

All of the example programs discussed in this document are available for download from

NAG’s website http://www.nag.co.uk/doc/techrep/index.asp#tr0208 in the file tr0208.zip.

If you try to open any of them in Excel then you may receive the following error

message:

To run the example programs, you will need to change the Macro security level as

follows.

Click on Tools->Macro->Security and select the Medium security level. In future,

whenever you attempt to open an Excel Spreadsheet that contains VBA macros, you will

receive a security warning but you will be able to proceed by clicking on ‘Enable

Macros’.

4. Your first NAG-Excel program – Calling a Bessel Function

The functions in the S (Approximation of Special Functions) chapter of the NAG

Library are among some of the easiest to use and so we are going to start there with the

function S17AEF which calculates the Bessel Function J0(x).

1. After opening a new Excel spreadsheet, press the Alt and F11 keys

simultaneously to open the VBA Editor.

2. In the VBA Editor click on Insert->Module to open the Module Window – This

is where we will construct our code.

3. Copy and paste the following code into the Module Window.

'Listing 1 - basic interface for S17AEF

Option Explicit

Option Base 1

Declare Function S17AEF Lib "FLDLL214M_nag.dll" (_

 ByRef X As Double, _

 ByRef IFAIL As long _

) as Double

4. Save the file and return to the Spreadsheet Window

5. In Cell A1 type the expression =S17AEF(1.0,1) which evaluates the function at

x=1.0. The second input argument, 1, determines how the NAG function will

handle errors – see the code walkthrough, below, for more details.

If everything has worked OK then you should see the expression replaced with the result

of the expression J0(1.0) = 0.765198.

Let’s go through the code a piece at a time:

'Listing 1 - basic interface for S17AEF

This is just a comment that explains what this code does. All comments in VBA start

with an apostrophe '

Option Explicit

This statement forces you to declare all variables before they are used which is just good

programming practice.

Option Base 1

The NAG Fortran Library is obviously written in Fortran where array variables are

usually indexed starting from one by default In VBA, however, array indices start at 0

by default. This line changes the VBA behaviour to bring it in line with the Fortran

convention. It is not actually necessary for this particular example since it does not use

arrays in any way – but most non-trivial programs do and so including it is a good habit

to get into.

Declare Function S17AEF Lib "FLDLL214M_nag.dll" (_

Here, we are declaring a function called S17AEF and telling VBA that the executable for

that function is contained in the DLL file FLDLL214M_nag.dll. The opening bracket (

signifies the start of the function definition itself and the _ is a continuation symbol.

Without the continuation symbol VBA would think that the (was the end of this

particular statement and your code would not run.

The NAG function name S17AEF is case sensitive in this part of the code so using s17aef

or S17aef here would fail. However, once declared, you can use either S17AEF or s17aef

inside your spreadsheet.

ByRef X As Double, _

This is the first input argument of the function we are declaring – a variable X with type

Double. If you have used VBA before you might not have been expecting at the

ByRef beginning. This indicates that when we call the function, the variable is passed

by reference rather than by value. This is actually the default behaviour of VBA (and

Fortran too for that matter) and so, technically speaking, we could leave it out but it is

considered good practice to include it explicitly.

ByRef IFAIL As Long _

This is the second argument of our function – a variable IFAIL with type Long.

IFAIL is used for both input and output and is used by the NAG routine for error

handling.

When used as an input variable IFAIL determines how the NAG routine will handle

error messages. If you set IFAIL to be 1 inside your spreadsheet (as we did in the

example on page 2) then you are asking the routine for a quiet return. This means that if

the routine encounters an error during calculation then it will not attempt to issue an error

message.

You could also pass a value of -1 to IFAIL inside Excel which would ask the routine for

a noisy return. In this mode the routine would output an error message and then attempt

to continue execution.

Finally, you could pass a value of 0 to IFAIL which would ask the routine for a hard

return. This reports the error message and then stops execution. This is almost certainly

something that you do not want to do when using the libraries inside Excel since it will

cause Excel to close. As an example try evaluating =S17AEF(10E100,0) inside your

Excel spreadsheet and see what happens.

IFAIL is also used as an output variable by the NAG routine. Once the routine has

finished its work, it will modify the value of IFAIL to indicate success or failure. More

information on how to use this feature will be given in section 5. For a more detailed

description of the IFAIL parameter, the reader is referred to chapter P01 of the NAG

Fortran Documentation [1].

) as Double

This is the final line of our function declaration and indicates that the return type of

S17ACF is of type Double.

5. Writing VBA Function Declarations for the NAG routines

If you have used the NAG Library before then you will know that many of its routines

have very long and complicated lists of arguments (E04CCA for example) and so the

VBA function declarations are going to be tiresome to type out.

Fortunately, NAG has done all of the hard work for you. Included with the Fortran

Library is a file called vb6.txt that contains VBA function declarations for every single

one of the routines in the library. All you need to do is search this file for the routine you

want and then copy and paste the declaration into your own code – it’s that simple.

If you installed the libraries in the default location then this file is located at C:\Program

Files\NAG\FL21\fldll214ml\vb_headers\vb6.txt but you can also open it from the start

menu by clicking on

Start->All Programs->NAG->FL21-> VB6 Declare Statements.lnk

6. Improving the Bessel function code

Although it is a useful illustrative example of how to call a NAG routine from VBA, the

code given in listing 1 is a bit raw and not really suitable for production use. A better

attempt at writing our own Bessel function is given in the following listing.

'Listing 2 - Improved interface to S17AEF

Option Explicit

Option Base 1

Declare Function S17AEF Lib "FLDLL214M_nag.dll" (_

 ByRef x As Double, _

 ByRef IFAIL As Long _

) As Double

Function Bessel(x As Double) As Variant

Dim IFAIL As Long

IFAIL = 1

Bessel = S17AEF(x, IFAIL)

If (IFAIL <> 0) Then

 Bessel = "Argument too large"

End If

 End Function

To use this function in Excel all the user has to do is evaluate something like

=Bessel(1.0)

in his spreadsheet which is much more user friendly than S17AEF(1.0,1). Error handling

is a little more elegant too which can be seen if you evaluate the following in Excel once

you have written the VBA code.

=Bessel(10E100)

As before, let’s look at this code piece by piece. The first few lines of listing 2 are

identical to listing 1 so we will not discuss that again. The new code starts with the

following line

Function Bessel(x As Double) As Variant

Here we define a function called Bessel that only takes one input argument, x. Since

this function will return a string when the argument is too large we have defined the

output of the function as Variant.

Dim IFAIL As Long

IFAIL = 1

Here we declare IFAIL as a long integer and set it to 1 so that, in the event of an error

occurring, the NAG routine will stay quiet about it and not attempt to throw its own error

message to the user. This allows us to control exactly how we handle errors using our

own code.

Bessel = S17AEF(x, IFAIL)

This is where the actual calculation is done – simply set the return value of Bessel to

the output of our original function S17AEF.

If (IFAIL <> 0) Then

 Bessel = "Argument too large"

End If

In section 3 it was mentioned that the value of IFAIL after a call to a NAG routine

indicates the success or failure of a calculation. If it becomes zero then the calculation

was successful and you can be sure of the result. If it is any value other than 0 then

something has gone wrong and the result is probably meaningless. This section of the

code checks to see if IFAIL is or not and if it isn’t it returns our own error message.

7. Using NAG routines that make use of callback functions

In this section we are going to write some VBA code that evaluates the following integral

Where a and b are two real numbers that a user can define inside a spreadsheet. A NAG

routine that is suitable for this kind of problem is D01AHF which implements a method

described by Patterson [2]. The VBA code that we need for this is given in listing 3

below.

'Listing 3 – Demonstration of callback functions

Option Explicit

Option Base 1

Declare Function D01AHF Lib "FLDLL214M_nag.dll" (_

 ByRef a As Double, _

 ByRef b As Double, _

 ByRef epsr As Double, _

 ByRef npts As Long, _

 ByRef relerr As Double, _

 ByVal F As Long, _

 ByRef nlimit As Long, _

 ByRef IFAIL As Long _

) As Double

Function funcy(x As Double) As Double

funcy = 4 / (1 + x * x)

End Function

Function integrate(a As Double, b As Double,epsr As Double)

Dim relerr As Double

Dim nlimit As Long, IFAIL as Long, npts As Long

nlimit = 0

integrate = D01AHF(a, b, epsr, npts, relerr, AddressOf

funcy, nlimit, IFAIL)

End Function

To make use of this in Excel use you should

1. Open up a new Excel spreadsheet and press the Alt and F11 at the same time to

open the VBA Editor.

2. In the VBA Editor click on Insert->Module to open the Module Window.

3. Copy and paste the above code into the Module Window.

4. Save the file and return to the Spreadsheet Window

5. Set up the spreadsheet so that it looks like the example below. Note that if you

change the limits a and b the integral is automatically re-evaluated.

As before, let’s break down this program piece by piece. We have seen the two

Option lines before and the block of code that starts with

Declare Function D01AHF was just copied from the vb6.txt file as described in

the previous section so the first piece of new code is

Function funcy(x As Double) As Double

funcy = 4 / (1 + x * x)

End Function

This is the function that is to be integrated and so if you wanted to integrate a different

function then all you need to do is change this block of code.

We don’t know in advance the values of x where the function funcy is to be evaluated

since that is something that will be decided by the NAG routine D01AHF at runtime. In

order to do this, D01AHF needs to be able to evaluate funcy wherever it chooses and so

we need to pass funcy to it somehow. In this context we refer to the function funcy as

a callback function.

Function integrate(a As Double, b As Double,epsr As Double)

In order to simplify things for the user of our spreadsheet we are wrapping the NAG

routine in a function called integrate. The only input arguments are the upper and

lower integration limits, a and b, along with the required relative accuracy epsr. All of

the other arguments required by the NAG routine itself will be taken care of inside this

function definition – safely hidden away from the spreadsheet user.

Dim relerr As Double

Dim nlimit As Long, IFAIL as Long, npts As Long

nlimit = 0

This is just a set of declarations for the variables needed by D01AHF. For the sake of

clarity, all variables have been given the names used in the NAG Fortran library

Documentation [1] to which the reader is referred to for details.

integrate = D01AHF(a, b, epsr, npts, relerr, AddressOf

funcy, nlimit, IFAIL)

Here we call the NAG routine with all of the required arguments as detailed in the

documentation of D01AHF. The key thing to notice here is AddressOf funcy

which passes the address of our callback function to the NAG routine D01AHF. This

allows D01AHF to evaluate funcy wherever it likes.

8. Using functions that use arrays as an input argument.

In this section we will learn how to pass arrays to the NAG routines. In order to do so we

will use the routine F03AAF, which returns the determinant of a real matrix, as an

example. Our first example will calculate the determinant of the following 3 x 3 matrix.

'Listing 4 - Array example using F03AAF
Option Explicit
Option Base 1

Declare Sub F03AAF Lib "FLDLL214M_nag.dll" (_
 ByRef a As Double, _
 ByRef IA As Long, _
 ByRef n As Long, _
 ByRef det As Double, _
 ByRef WKSPCE As Double, _
 ByRef IFAIL As Long _
)

Function det() As Double
Dim a(3, 3) As Double
Dim IA As Long
Dim n As Long
Dim WKSPCE(3) As Double
Dim determinant As Double
Dim IFAIL As Long
IFAIL = 1
IA = 3
n = 3
a(1, 1) = 33
a(1, 2) = -24
a(1, 3) = -8
a(2, 1) = 16
a(2, 2) = -10
a(2, 3) = -4
a(3, 1) = 72
a(3, 2) = -57
a(3, 3) = -17
Call F03AAF(a(1, 1), IA, n, determinant, WKSPCE(1), IFAIL)
det = determinant

End Function

To use this function inside Excel simply type the following into any cell

=det()

If everything goes according to plan then you will obtain the result of the calculation

which is 6. So, let’s look at the code itself.

Similar to previous examples, the block of code that starts with Declare Sub

F03AAF was simply copied from the vb6.txt file as described in section 4. The first

unfamiliar piece of code to us is

Dim a(3, 3) As Double

This simply creates a VBA array with the name a that contains 3 rows (1
st
 argument) and

3 columns (2
nd

 argument). This will later be used to hold the values of the matrix whose

determinant we wish to calculate.

Dim WKSPCE(3) As Double

As described in the NAG documentation, the function F03AAF requires an area of

memory to be set aside which it will use as workspace. The dimension of this workspace

must be at least N for an N x N matrix and so here it is set to 3.

a(1, 1) = 33
a(1, 2) = -24

These, along with the other 7 subsequent lines, define our array element by element. The

general syntax is

ArrayName(row, col) = value

Call F03AAF(a(1, 1), IA, n, determinant, WKSPCE(1), IFAIL)

Here we call the NAG routine itself. Note that instead of simply using the array names a

and WKSPCE, we must pass the first element of each array a(1, 1) and
WKSPCE(1). The result of the calculation is placed in the variable determinant.

det = determinant

Here we return the result of our calculation to the calling function.

This is all well and good but it would be much more user friendly if we could produce a

function that calculates the determinant of any arbitrary square matrix entered into a

spreadsheet. Listing 5 is a skeleton version of just such a function.

'Listing 5 - More advanced array example using F03AAF

Option Explicit

Option Base 1

Declare Sub F03AAF Lib "FLDLL214M_nag.dll" (_

 ByRef a As Double, _

 ByRef IA As Long, _

 ByRef n As Long, _

 ByRef det As Double, _

 ByRef WKSPCE As Double, _

 ByRef IFAIL As Long _

)

Function determinant(a As Range)

Dim myArray() As Double

Dim x As Long

Dim y As Long

Dim result As Double

Dim WKSPCE() As Double

Dim IFAIL As Long

Call Assemble(a, myArray) 'Takes the range a and puts it

into the vba array myArray

'get array dimensions

x = UBound(myArray, 1)

y = UBound(myArray, 2)

If (x <> y) Then

 determinant = "Error: Given range is not square"

 Exit Function

End If

'create workspace

ReDim WKSPCE(x)

IFAIL = 1

Call F03AAF(myArray(1, 1), x, x, result, WKSPCE(1), IFAIL)

determinant = result

End Function

Sub Assemble(x As Range, a As Variant)

' Takes an argument X and form a VB array A (ReDimmmed)

Dim i As Long, j As Long

Dim m As Long, n As Long

 'Now get the overall dimensions of the matrix

 m = X.Rows.Count

 n = X.Columns.Count

 ReDim a(m, n) ' VB Array redimensioned

 ' Assemble the matrix A

 For j = 1 To n

 For i = 1 To m

 a(i, j) = X.Cells(i, j).Value

 Next i

 Next j

End Sub

The function determinant defined in the code above allows the Excel user to

calculate the determinant of any square matrix entered into a spreadsheet. An example of

its use for a 4x4 matrix is given in the screenshot below

We have seen most of the concepts in this code before – the first new item concerns the

function definition:

Function determinant(a As Range)

This simply lets VBA know that we are going to pass a Range (such as A1:D4) to our

function, rather than a Double as we have done in our previous functions.

Dim myArray() As Double

This line simply declares an empty VBA array called myArray.

The situation we find ourselves in is as follows: An Excel user prefers to work with

Ranges such as A1:D4 but the NAG routines will not accept Ranges – they will only

accept VBA arrays. So, our strategy will be to use a function called Assemble to

create a temporary VBA array and copy the data specified by the Range into it. We will

then pass this array to the NAG routine for processing. The Assemble function itself is

defined later in our code.

Dim WKSPCE() As Double

As we learned in Listing 4, the NAG routine F03AAF requires some memory to use as

workspace and will need an array of at least N Doubles when dealing with an N x N

matrix. At this stage we have no idea how big the input Range is so we simply create an

empty workspace array which we will resize later.

Call Assemble(a, myArray)

Assemble is a function defined later in the program which takes the values in the Range

a and puts them in the VBA array myArray.

x = UBound(myArray, 1)

y = UBound(myArray, 2)

UBound is a standard VBA function that returns the largest available subscript for the

given array and dimension. For example if myArray was an array declared with the

command Dim myArray(3, 4) As Double then x would be 3 and y would be 4.

Similarly, if the Assemble function were to produce a 5 x 5 VBA array then both x and

y would be 5.

If (x <> y) Then

 determinant = "Error: Given range is not square"

 Exit Function

End If

The determinant of a matrix is only defined for square matrices so here we return an error

message to the user and exit from the function if the two matrix dimensions x and y are

not equal.

ReDim WKSPCE(x)

At this stage in our program we know that x = y and that we are going to attempt to

calculate the determinant of an x by x matrix. Here we use the ReDim command to set

our workspace to the required size.

Call F03AAF(myArray(1, 1), x, x, result, WKSPCE(1), IFAIL)

This is almost exactly the same call to F03AAF as we had in Listing 5. Again, note that

whenever we pass an array to the routine we must pass its first element.

Sub Assemble(x As Range, a as Variant)

This is the beginning of the code for the Assemble subroutine which takes a Range x

and returns an array a. It is fairly self explanatory and commented so we will skip the

detail. It is worth noting that, as written, Assemble only works for contiguous selections

in the worksheet. For example if you use the Ctrl key to select columns A and C, then

only column A will be used.

9. Using functions that return an array.

Finally, we turn to functions that return an array of values to the calling spreadsheet. As

an example we will look at G01AAF which returns a set of basic statistics such as mean,

standard deviation and kurtosis for a given set of input values.

'Listing 6 - Array output example using F01ABF
Option Explicit

Option Base 1

Declare Sub G01AAF Lib "FLDLL214M_nag.dll" (_

 ByRef N As Long, _

 ByRef X As Double, _

 ByRef IWT As Long, _

 ByRef WT As Double, _

 ByRef Xmean As Double, _

 ByRef S2 As Double, _

 ByRef S3 As Double, _

 ByRef S4 As Double, _

 ByRef Xmin As Double, _

 ByRef Xmax As Double, _

 ByRef WTSum As Double, _

 ByRef IFAIL As Long _

)

Function getstats(A As Range) As Variant

Dim myArray() As Double

Dim N As Long 'The number of observations

Dim IWT As Long 'Are weights supplied by the user?

Dim WT() As Double 'Array that contains weights if used.

Dim IFAIL As Long

Dim results(7) As Double

Dim Xmean As Double 'The mean

Dim S2 As Double 'The standard Deviation

Dim S3 As Double 'The coefficient of Skewness

Dim S4 As Double 'The coefficient of Kurtosis

Dim Xmin As Double 'The smallest value in the sample

Dim Xmax As Double 'The largest value in the sample

Dim WTSum As Double 'The sum of the weights

Call Assemble(A, myArray)

'get array dimension

N = UBound(myArray, 1)

ReDim WT(N)

IFAIL = 1

IWT = 0 'No user supplied weights

Call G01AAF(N, myArray(1), IWT, WT(1), Xmean, S2, S3, S4,

Xmin, Xmax, WTSum, IFAIL)

'Populate results array

results(1) = Xmean

results(2) = S2

results(3) = S3

results(4) = S4

results(5) = Xmin

results(6) = Xmax

results(7) = WTSum

'return results

getstats = Application.Transpose(results)

End Function

Sub Assemble(X As Range, A As Variant)

' Takes an argument X and form a VB array A (ReDimmmed)

Dim s As String

Dim j As Long

Dim m As Long, N As Long

 'Now get the overall dimension of the matrix

 N = X.Rows.Count

 ReDim A(N) ' VB Array redimensioned

 'Assemble the matrix A

 For j = 1 To N

 A(j) = X.Cells(j).Value

 Next j

End Sub

The getstats() function, defined by the code above, returns an array of 7 values that

contains the set of statistics calculated by G01AAF and an example of its use is shown in

the screenshot below. Notice the curly brackets in the formula {=getstats(A2:A25)}

which is an example of an array formula in Excel. You might be tempted to reproduce

the screenshot by actually typing {=getstats(A2:A25)} into a cell and pressing Enter but

this will not work!

The correct way to enter this array formula is to highlight the cells that will contain the

results array (in this case a single column of 7 rows), type =getstats(A2:A25) and press

the Ctrl, Shift and Enter keys simultaneously. If you highlight less than 7 cells before

entering the array formula then only the first few elements of the array will be displayed

in the spreadsheet. If you highlight more than 7 cells then the extra cells will contain the

value #N/A.

This method of entering array formulae into Excel is almost the only new thing we have

to learn in this section as much of the code in Listing 6 is familiar to us by now. The only

new thing we have done is to set up and return an array, results, rather than returning

a single value.

getstats = Application.Transpose(results)

Here we return the Transpose of the one dimensional results array in order to force it

to return a single column of values. If we wanted to return a single row of values instead

then we would replace the above line with

getstats = results

Finally, the Assemble function is slightly different to that of Listing 5 as it only has to

deal with a one dimensional Range

10. What we haven’t told you

Although we have covered enough material in this document to enable a typical user to

use many of the NAG routines from VBA, there are still several concepts that have not

been discussed. Subject to demand these topics may be discussed in a future document

and include

Complex Numbers

Callback functions that use arrays (required in functions like E04JYF)

How to deal with non-contiguous ranges

Acknowledgements

Thanks to the staff at NAG for their helpful advice, comments and explanations. Any

mistakes that remain are mine alone.

References

1. NAG Fortran Library Documentation (accessed on June 4
th

 2008),

 http://www.nag.co.uk/numeric/FL/FLdocumentation.asp

2. Patterson T N L (1968b) The Optimum addition of points to quadrature formulae

Math. Comput. 22 847–856

If you need more information or assistance about the NAG Libraries and Excel, please

contact our support team support@nag.co.uk

NAG Acknowledgement
NAG would like to thank Michael Croucher for his time in developing this article.

